Adsorption of Antibiotics on Graphene and Biochar in Aqueous Solutions Induced by π-π Interactions
نویسندگان
چکیده
The use of carbon based materials on the removal of antibiotics with high concentrations has been well studied, however the effect of this removal method is not clear on the actual concentration of environments, such as the hospital wastewater, sewage treatment plants and aquaculture wastewater. In this study, experimental studies on the adsorption of 7 antibiotics in environmental concentration of aqueous solutions by carbon based materials have been observed. Three kinds of carbon materials have shown very fast adsorption to antibiotics by liquid chromatography-tandem mass spectrometry (LC-MS-MS) detection, and the highest removal efficiency of antibiotics could reach to 100% within the range of detection limit. Surprisedly, the adsorption rate of graphene with small specific surface area was stronger than other two biochar, and adsorption rate of the two biochar which have approximate specific surface and different carbonization degree, was significantly different. The key point to the present observation were the π-π interactions between aromatic rings on adsorbed substance and carbon based materials by confocal laser scanning microscope observation. Moreover, adsorption energy markedly increased with increasing number of the π rings by using the density functional theory (DFT), showing the particular importance of π-π interactions in the adsorption process.
منابع مشابه
Synthesis and Characterization of Graphene Oxide Nano-Sheets for Effective Removal of Copper Phthalocyanine from Aqueous Media
Graphene Oxide (GO) nano sheets was synthesized from graphite by Hummers method. The nature and morphology of the GO were characterized using FT-IR, UV-Vis, SEM and XRD analysis. Batch sorption experiments were carried out to remove copper (ii) phthalocyanine-tetrasulfonic acid tetrasodium salt [Cu(tsPc)-4.4Na+] from its aqueous solutions using GO as an adsorbent. Experime...
متن کاملEffects of Structure and Partially Localization of the π Electron Clouds of Single-Walled Carbon Nanotubes on the Cation-π Interactions
A C102H30 graphene sheet has been rolled up to construct Single-Walled Carbon NanoTube Fragments (SWCNTFs) as parts of armchair carbon nanotubes by computational quantum chemistry methods. Non-covalent cation-π interactions of the Na+ cation on the central rings of SWCNTFs have investigated. The binding energies of the Na+-SWCNTF complexes versus ...
متن کاملAdsorption Characteristics of Norfloxacin by Biochar Prepared by Cassava Dreg: Kinetics, Isotherms, and Thermodynamic Analysis
Biochars (BC) generated from biomass residues have been recognized as effective sorbents for organic compounds. In this study, biochars as adsorbents for the removal of norfloxacin (NOR) from aqueous solutions were evaluated. Biochars were prepared from cassava dregs at 350 °C, 450 °C, 550 °C, 650 °C, and 750 °C, respectively (labeled as BC350, BC450, BC550, BC650, and BC750). The results showe...
متن کاملOne-pot synthesis of carbon supported calcined-Mg/Al layered double hydroxides for antibiotic removal by slow pyrolysis of biomass waste
A biochar supported calcined-Mg/Al layered double hydroxides composite (CLDHs/BC) was synthesized by a one-pot slow pyrolysis of LDHs preloaded bagasse biomass. Multiple characterizations of the product illustrated that the calcined-Mg/Al layered double hydroxides (CLDHs) were successfully coated onto the biochar in slow pyrolysis of pre-treated biomass. The as-synthesized CLDHs/BC could effici...
متن کاملMolecular-scale Hydrophilicity Induced by Solute: Molecular-thick Charged Pancakes of Aqueous Salt Solution on Hydrophobic Carbon-based Surfaces
We directly observed molecular-thick aqueous salt-solution pancakes on a hydrophobic graphite surface under ambient conditions employing atomic force microscopy. This observation indicates the unexpected molecular-scale hydrophilicity of the salt solution on graphite surfaces, which is different from the macroscopic wetting property of a droplet standing on the graphite surface. Interestingly, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016